Preventing a Bloodworm Invasion Midge fly infestations can pose considerable challenges for activated sludge systems and lagoons. Also known as Chironomids or bloodworms in their larvae stage, these insects resemble mosquitos without the blood sucking proboscis. Adult males can be distinguished from females based on their feather like antennae. After dormancy in the winter, midge flies emerge in the summer ready to lay between 100 and 3,000 eggs per female. Though midge flies do not suck blood like mosquitos, they disrupt communities in other ways. Swarms annoy both local residents and operators by flying into unsuspecting mouths and flooding outdoor lighting. A study by Selden et al. (2013) found that wastewater operators can develop allergic reactions from midge fly exposure. Chironomids can also cause quite a startle to the public when bright red larvae make their way into drinking water systems. When it comes to maintaining treatment systems, wastewater operators may be most concerned with the larvae stage of midge flies. Their sticky red bodies cling to suspended solids encasing them in a cocoon of decaying organic matter. Under the protection of these cocoons, they can consume considerable amounts of sludge, bacteria flocc, and nitrifying bacteria. An infestation will cause sludge clumping, rising solids, or foaming issues. In one small town a bloodworm invasion wreaked havoc on an activated sludge plant over a single weekend. The wastewater operator found sticky clumps of eggs had congested the system’s pumps while larvae had eaten away at his mixed liquor suspended solids (MLSS). Facultative lagoons and secondary clarifiers are a favored breeding ground for these pests. Midge flies prefer to lay their eggs in still, high-nutrient water with fixed media, floating scum, or algae. Once the eggs hatch, larvae will likely sink to the bottom to feed on organic matter and sludge. The hemoglobin that gives bloodworms their red color also allows them to live in low dissolved oxygen (DO) conditions. To avoid bloodworm infestations, operators should focus on encouraging circulation and limiting food sources. Systems can start midge fly control with mixing, limiting surface scum and algae, installing bug zappers, attracting bats and swallows, or turning off lights at night. Introducing a predatory fish can also help. Lagoon operators can encourage circulation by cutting back overgrown vegetation. Any dead spots in circulation should be addressed. When these methods don’t work, some systems will use larvicides and chemical agents as a last resort. Operators should check that the control methods they’ve selected are approved by their local regulatory authorities before use. When summer starts make sure your treatment system is kept clean and free of obstructions to circulation. With good preventative maintenance, you can spare yourself the nightmares of a bloodworm invasion. July 12, 2019 By Jill Wallitschek Wastewater activated sludge, blood worms, chironomids, lagoons, midge flies, red worms 0 0 Comment Read More »
Featured Video: Tech Review: Liquid Flow Velocity Knowledge of flow velocity, volumetric flow rate, and pipe diameter can assist operators in selecting, installing, and troubleshooting flow meters. This week’s featured video will guide operators in the math used to calculate flow velocity using volumetric flow and or pipe diameter. Brent Baird with Instruments Direct demonstrates three techniques that will estimate flow velocity. The old school method utilizes a flow calculator slider ruler. With Brent’s particular ruler, by sliding to the known value for the inside pipe diameter (ID) in inches, the velocity in feet per second (FPS) can be read above the known value for volumetric flow in millions of gallons per day (MGD). Alternatively, the inside pipe diameter can be estimated by lining up the known values for velocity and volumetric flow and then looking at the value indicated under pipe diameter. Brent demonstrates that a cross reference chart performs the same calculations using a different visual. Both of these tools are based off the equation GPM=2.45*ID2*FPS. If neither of his reference tools are available, plugging in the known FPS value for velocity and the inside pipe diameter in inches will calculate the volumetric flow rate. By rearranging the equation to solve for FPS, the flow velocity can be calculated using FPS=GPM/(2.45*ID2). Remember to follow PEMDAS. To calculate the internal pipe diameter with known values for FPS and GPM, rearrange the equation to solve for pipe diameter: ID= √(GPM/FPS/2.45). If the value for the internal pipe diameter is unknown, Brent demonstrates how an ANSI chart can be used to find that value. With the video's final explanation of basic flow meter requirements, these calculations can be used to spot and avoid problem areas for flow metering in your distribution system. July 5, 2019 By Jill Wallitschek Certification, Distribution, Operator Math flow, flow meters, math, pipe diameter, velocity 0 0 Comment Read More »
Guidelines for Public Water Systems in Submitting Public Comments on Regulatory Proposals Submitting comments on proposed regulations can help the Environmental Protection Agency (EPA) to establish inclusive rules that consider the perspective of your public water system. Just one effectively written and well supported comment can create a much bigger impact than hundreds of poorly written arguments. Your best opportunity to submit a comment for a drinking water or wastewater regulation is offered after the Agency releases a Notice of Proposed Rulemaking (NPRM) to the Federal Register. A copy of the proposed rule and supporting documents will be available on the EPA’s electronic public docket system, Regulations.gov, where the public can also submit comment. To comment on a rule with Regulations.gov you should know the Docket number, title of the regulation, or some title keywords. Once you search for the regulation, select ‘comment now’ or ‘Open Docket Folder’ under the correct rule. The docket folder includes information about the proposed regulation, its supporting documents, and other public comments. An effective comment will be written concisely with clear, professional language and sound reasoning. You will want to provide examples that support your stance citing data driven evidence, publications, case studies, or technical resources when possible. Explain the impact of the proposed regulation from the perspective of your water industry experience. If the impact includes a cost analysis, make sure to include how those costs were calculated. A well written argument for or against the regulation will consider both sides of story. When you oppose a particular regulatory action, suggest potential alternatives. Comments that address particular wording or actions within the regulation should cite their exact page number, column, and paragraph from the register document. When submitting the comment, you can choose to attach supporting files, however be sure to read through the restrictions associated with attachments. Finally, remember that anyone can view your comment. Once the public comment period has ended, your decisive utility perspective will inform the revision considerations to the final rule. June 28, 2019 By Jill Wallitschek Regulations public comment, regulations, rules 0 0 Comment Read More »
Featured Video: Clean Water Is So Close for Tulare County's Tooleville Tooleville, a rural community in the San Joaquin Valley of California, lacks reliable access to safe drinking water. For over 10 years Tooleville has been working on a consolidation campaign with the neighboring city of Exeter to access clean water through a connection to their system. Like many rural towns in the area, Tooleville’s groundwater has been contaminated with nitrates, pesticides, and hexavalent chromium. Given the city’s financial limitations, meeting drinking water compliance and customer satisfaction has been precarious. While hexavalent chromium (chromium-6) was evaluated under the third round of Unregulated Contaminant Monitoring (UCMR 3), there is currently no federal drinking water regulation. A regulation does exist for total chromium which includes all forms of chromium. The total chromium standard of 0.1 mg/L assumes that the chromium sample is composed entirely of its most toxic form, chromium-6, to safeguard against the greatest potential risk. In 2017 California withdrew the state standard of 0.01 mg/L of hexavalent chromium. Chromium-6 exposure through drinking water has been linked to cancer and skin reactions in some research studies. For nitrates the EPA has set both the maximum contaminant level goal (MCLG) and maximum contaminant level (MCL) at 10 mg/L. Consuming water above this level can cause methemoglobinemia in babies and other health conditions. Though the town has met federal limits for nitrates and total chromium, its 2017 consumer confidence report indicates compliance issues with total coliform. Within the last year, the city of Exeter has agreed to evaluate the capacity of its own water treatment system to access the possibility of providing water to Tooleville. This recent progress offers hope to many residents who have pushed for consolidation. As negotiations move forward, two options have been identified. Exeter could use a master meter to bill monthly water use while Tooleville continues to operate its own system. Alternatively, Exeter could consolidate Tooleville’s system entirely. Regardless of the option, Exeter will require new infrastructure to make the connection possible. For now Tooleville must wait for an evaluation to be completed. Once Exeter has a better understanding of their system capacity, the final decision will be left in the hands of the Exeter City Administrator and City Council. June 21, 2019 By Jill Wallitschek Asset Management chromium, consolidation, regionalization 0 0 Comment Read More »
A Microscopic Look at the Role and Life Cycle of Daphnia in Wastewater Lagoons Knowledge of lagoon microbiology can provide proactive insight into the present conditions of your wastewater treatment processes. Since we have already covered general wastewater microbiology in a previous featured video, this week’s blog post will highlight the specific roles of Daphnia in wastewater digestion. Daphnia, also known as water fleas and Ceriodaphnia, are metazoan crustaceans that maintain a useful position in the wastewater digestion food chain if controlled by a limiting food source or the careful addition of hyacinths. These one-eyed crustaceans can consume yeast, algae, bacteria, protozoa and occasionally sludge during the winter. In the wild Daphnia are a food source for small fish, tad poles, and aquatic insects. General stressors for water fleas include cold temperatures, overcrowding, low dissolved oxygen (DO), high ammonia levels, and high pH. To provide context for Daphnia's role in lagoon treatment requires a review of the wastewater food chain. Bacteria are at the heart of waste digestion breaking down organic material into settleable particles. Protozoa feed on these bacteria populations reducing the organic load. Metazoan organisms like Daphnia keep the populations of protozoa, bacteria, and algae in check. Daphnia can be useful to wastewater operators under healthy lagoon conditions. These water fleas control green algae populations in the summer. As long as cyanobacteria weren't competing with those algae populations, overall pond health will improve by a reduction in total suspended solids (TSS), cloudiness, and turbidity. At the cost of growing Daphnia populations, dissolved oxygen levels decrease. Water fleas are often indicators for low dissolved oxygen and water toxicity. Under low DO, Daphnia produce hemoglobin to increase oxygen efficiency. This hemoglobin turns water fleas reddish-pink causing red streaks to appear in your lagoon. When operators see red water fleas, they should consider treating the lagoon with aeration or mixing. Given their low tolerance to toxicity and short generational cycles, Daphnia are also used in the EPA's whole effluent toxicity tests (WET). Now that we have a better understanding of water fleas, we can appreciate this microscopic view of Daphnia as told by Sacramento Splash. The video reviews the natural life cycle and anatomy of these helpful water crustaceans. June 14, 2019 By Jill Wallitschek Wastewater ceriodaphnia, daphnia, lagoons, microbiology, water fleas 0 0 Comment Read More »
Data Protection and Cybersecurity for Small and Medium Systems Many water utilities rely on online technology and computer systems to increase their working efficiency. In the office space, data management software, pay roll systems, customer billing programs, utility websites, and social media improve customer services and provide an organized method to retain and access utility information. On the operational side, employees may rely on remote access control systems such as SCADA or smart metering to monitor or control systems while performing maintenance in the field. These control systems allow for improved response times and monitoring. Yet as we all learned from Spiderman, with great power comes great responsibility. Without sufficient cybersecurity measures, systems risk the health and security of their customers. Successful attackers can steal customer personal data such as credit cards, social security numbers, and contact information. They may attempt to deface utility websites compromising customer confidence. If your system uses online process control systems, hackers could lock out utility access, alter treatment processes, damage equipment, and override alarms. The American Water Works Association (AWWA) has listed a variety of cyberattacks and their consequences in its 2018 Cybersecurity Risk & Responsibility in the Water Sector Report. These attacks resulted in leaked customer information, considerable financial losses, altered chemical dosing, and even source water contamination. Just recently staring in May of 2019 the City of Baltimore has been held hostage by an ongoing three week cyberattack that demands $100,000 in Bitcoin to free city files and water billing data. There are many types of cyberattacks including password hacking, the exploitation of software vulnerabilities, denial of service, and malware. Common malware includes ransomware, spyware, trojan horse, viruses, and key loggers. Attacks can even happen through opportunity theft, improper disposal of computer equipment, or phishing attempts where thieves pose as legitimate organizations requesting confidential information. To prevent cyberattacks, start by identifying vulnerabilities, developing a multi-tier security plan, and actively enforcing that plan. The EPA has developed a guide explaining 10 key components for a cybersecurity plan that includes planning worksheets and information on how to respond in the event of an attack. Systems should plan to update software regularly and require strong passwords that are different for each account. Installing anti-virus software and firewalls is also effective. A security plan should include measures to educate employees on cybersecurity awareness and limit access to security information based on job function. For an in-depth list of security practices, read through WaterISAC’s 2019 guide to reduce exploitable weaknesses or the EPA’s Incident Action Checklist. The AWWA’s guide on Process Control System Security Guidance for the Water Sector can aid systems using smart technology. To improve social media and website security, start with Hootsuite’s social media security tips and Sucuri’s website security tips. If a data breech does occur, utilities will want to have and established protocol to resolve and mitigate potential damage. The Cyber Security Adviser Program with the Department of Homeland Security (DHS) offers regional affiliates that will assist systems in vulnerability assessments, plan development, and informational support. While the costs associated with response, forensics, and legal fees can be expensive, waiting to take action can incur an even greater cost. Remember to keep an active cybersecurity plan and, if incidents should occur, report them to local law enforcement, the DHS, and WaterISAC. June 7, 2019 By Jill Wallitschek Emergency Response, Internet, Security cybersecurity, emergency response, emergency response plan, featured document, social media, websites 0 0 Comment Read More »
Featured Videos: Pump Curves and Pump Selection Basics Pump curves inform operators to select and run pumps at optimal efficiency for their system. Whether preparing for a certification exam or looking to refresh your knowledge of pump hydraulics, this week’s featured videos will teach you how to read pump curves, calculate system curves, and use these curves to select an ideal pump for your system. For any given pump, flow will impact pressure head, efficiency, horse power requirements, and vulnerability to pump damage. This video reviews three different pump curves starting with a very simple curve and moving to more complex curves with increasing pump information. Understanding performance, efficiency, horsepower, and net positive suction head (NPSH) curves is essential in selecting the proper pump for your system’s needs. After covering the basics, this video introduces concepts that will help operators to select and run pumps at recommended operating zones to maximize pump life and reduce operational costs. Once you start to feel comfortable with these concepts, the next step is learning how to compare pump curves to your own system. For pump curves to be useful during selection, you must first have a system curve of your own. Prepare for a bit of math because this next video walks through the calculations needed to develop a simplified equation that graphs system pressure head (Hp) as a function of flow rate (Q) squared. When watching the video, remember that z1 is the starting elevation and z2 is the final elevation. With a well developed knowledge of pump curves and system curves, selecting a new pump becomes much easier. This last video demonstrates how to compare the system curve to the pump curve . When comparing these two graphs, the pump’s best efficiency point should be fairly close to the system operating point. Other considerations include how much power is required to operate the pump and the net positive suction head available to avoid pump cavitation. These videos simplify many of the factors that go into a real system, however they offer a good foundation for operators to better understand the theory behind pump curves and pump selection. May 31, 2019 By Jill Wallitschek Operations and Maintenance, Small System O&M pump curves, pump selection, pumps, system curve 0 0 Comment Read More »
A Review of the EPA's New Drinking Water Training System The newest tool released by the EPA allows operators to learn about national primary drinking water regulations through an online and self-paced training system. According to the EPA, this system was developed at the request of states, water associations, and operators. Stakeholders wanted operators to have accessible regulatory training easily available to an industry where shrinking resources and a retiring workforce make taking time away from water facilities difficult. Approximately 130 training modules on various drinking water rules make up the system. The modules runs well in most browsers as long as Adobe Flash is installed and running. Both audio and closed captions are available during the training with the option to run the modules at your own pace. To use this system, each operator will have to create their own account using an email address that has not been registered prior. The system has a fairly easy setup. When an operator signs in, the homepage shows an Announcements section that will update users on new modules or changes to the system. Operators can design their own lesson plan for the regulations that apply to their system under the Curriculum Builder. The Builder asks questions about the system type, source water, and treatment methods. A new curriculum can be made and started at any time with each curriculum found under the Curriculum List. Usually 5-15 modules will make up a curriculum. Each module will cover a different rule with a quiz of 4-5 questions at the end. The operator must answer each question correctly to pass. If operators want to run through the modules individually they can find a list under the Course Catalog tab, however this mode does not offer quizzes or completion credit by the system. A complete list of training modules available as of May 2019 can be found here. An interesting feature to note about the training is that within each module slide includes the CFR citation number so operators can find the corresponding rule in the Code of Federal Regulations. It should also be noted that these topics cover federal regulations only and do not apply to states with stricter drinking water requirements. When a training has been completed, the Certificates tab will create a print out certificate of the desired curriculum. The only drawback for operators is that this training is not pre-approved for CEUs in any states as of yet. To provide credit, a state primacy will have to review each of the 130 modules. The next plans for this training system involves designing new modules on Special Drinking Water Topics. While these modules have yet to be developed, drinking water operators can look forward to those resources in the future! April 29, 2019 By Jill Wallitschek Regulations drinking water, featured document, regulations, training 0 0 Comment Read More »
Featured Video - WaterClips: Financial Benchmarking for Water Utilities In this Featured Video, the Environmental Finance Center at UNC-Chapel Hill reviews the basics on how to properly monitor utility finances. Financial monitoring is crucial in making successful short-term and long-term management decisions to maintain optimal treatment levels, good customer service, and the longevity of your system. The financial benchmarking methods covered in this video include Current Ratio, Days Cash on Hand, Operating Ratio, and Debt Service Coverage Ratio. Implementing consistent benchmarking tools will ensure that your utility is working to cover the true system costs while planning for infrastructure depreciation and unexpected expenses. April 15, 2019 By Jill Wallitschek Financial Management, Funding finance, finances, financial management, financial monitoring 0 0 Comment Read More »
Tools and Resources for Workforce Planning Workforce planning is an essential step in any small system’s asset management plan. Just as your utility cannot run without functioning infrastructure, services will not continue in the absence of a talented, knowledgeable operator. Without developing and facilitating workforce development plans, you risk the short and long-term security of your system and your customer's health. That being said, workforce planning can often seem overwhelming. Many rural systems rely on just a few people to take on the many positions that keep a system running. If those employees left, much of their system knowledge would be lost with no one capable to take over. Yet the struggle to find and retain talent for small systems won’t get any easier without action. In this blog post, we’ll review helpful resources for small systems in succession planning, knowledge transfer, employee hiring and retention, and talent attraction. Succession planning can become considerably less overwhelming when you invest a small amount of time each day to increase your knowledge of workforce development. This white paper by the the New York Water Environment Association summarizes the resources needed for succession planning. To actually develop your own plan, this one hour webinar by the Environmental Finance Center covers how to write and implement a plan by evaluating your utility’s workforce condition, identifying critical positions, understanding employee life cycles, and facilitating leadership development plans. An important step identified in any succession plan involves implementing knowledge management techniques to retain critical employee institutional knowledge. An article from Kansas Rural Water Association’s The Kansas Life Line describes how employees can make small changes to their day to create digital workflow records that can be easily found by future employees. The EPA has also developed a knowledge retention tool operators can use to consolidate utility information onto one document. Among the challenges associated with discovering new talent, managers must also learn better practices for recruiting and retaining new employees. The Environmental Finance Center has written a useful blog that describes how to hire utility staff through online job networks and how to retain those employees through performance evaluations. For a more in-depth resource on talent recruitment and retention, the Water Research Foundation partnered with the EPA to publish research findings on operator and engineer recruitment strategies. Chapter five lists the strategies developed from their research. For a video geared more toward small systems, check out the Environmental Finance Center’s one hour webinar on recruiting new staff. To recruit and retain employees, managers will have to understand generational differences. While these differences can seem daunting, an Environmental Finance Center blog points out that many other generations in their twenties were labeled with a similar stigma. The article debunks many misconceptions about millennials. When it comes to any age group, utilities find that a lack of awareness about the profession makes hiring new talent in the water sector difficult. Though many states, local governments, colleges, and water organizations are working to draw interest to this career path, small water utilities can also participate. The Work in Water program at Wichita State teaches utilities how to engage schools and develop internships while offering mini-grants to cover program costs. If you’re interested in developing your own internship program, you can also check out the internship guidebook developed by Baywork for their own program. In addition utilities can work with their local Rural Water Association’s apprenticeship program to take on apprentices. Military veterans are another group utilities can recruit since they already possess a series of practical professional skills. The American Water Works Association has created a 12 page guide that provides veteran recruiting tips Every workforce development plan is unique. With these resources, it's left up to you and your facility to determine what methods will best achieve the goals set for your community. April 15, 2019 By Jill Wallitschek Workforce succession planning, featured document, knowledge transfer, recruiting, retaining, talent attraction, workforce development 0 0 Comment Read More »