rss Blog

Preparing for Funding Opportunities

Blog Post Thumbnail1.png

Proposed infrastructure funding has been on everyone's radar, despite uncertainty about what fine print will ultimately be passed by Congress. The new plan could be the largest investment in drinking water and wastewater infrastructure in American history and bipartisan support for these efforts means that new funding opportunities for a range of stakeholders are likely.

This makes it all the more important to know how to apply for and manage funding when it becomes available, as well as understand your needs and eligibility. Navigating the world of funding can feel intimidating, but there are many resources available to help aid the process. Preparing ahead of time is the best way to make sure your organization is ready to respond to funding opportunities. 

This preparation begins with a capacity development approach. Capacity development is a process that water systems can use to acquire and maintain adequate technical, managerial, and financial capacity. Programs have been established in every state to help public water systems continue to strengthen their capacity and you've likely crossed paths with training, resources, or technical assistance provided through these programs.

We're highlighting a selection of our favorite capacity development resources that can help systems (and those who serve them) undertake readiness efforts for potential infrastructure investment.

Managerial Capacity 

Managerial capacity for short and long term planning includes:

  • Ownership accountability 
  • Staffing and organization 
  • Effective external linkages 

Water System Owner Roles and Responsibilities: A Best Practices Guide
This guide can help owners and operators of public water systems serving less than 10,000 people better understand their responsibilities. 

Strategic Planning: A Handbook for Small Water Systems
This handbook was designed to help operators serving less than 3,000 people develop a strategic management plan. 

Manual for Assessing Public Water Supply System Capability
This manual goes through each of the components of capacity development, technical capacity, managerial capacity, and financial capacity. 

Financial Capacity 

Financial capacity for short and long term planning includes:

  • Revenue sufficiency 
  • Creditworthiness 
  • Fiscal management and controls  

Water Finance Clearinghouse
This portal was created by the U.S. EPA to help water operators locate helpful financial resources. 

Grant (Loan) Writing 101 - Right Grant, Right Time, Right Project
This 31-slide presentation explains the numerous steps that are included in writing a grant from start to finish. 

Introduction to Grant Writing
This 25-slide presentation addresses the basics of grant writing in the state of Utah. 

A Financially Healthy Water System Now and Into the Future
This presentation introduces questions that should be considered regarding the financial health of your system and how to understand your system's present and future needs.

U.S. EPA Grants Management Training for Applicants and Recipients
This online training course designed by the U.S. EPA  includes six modules that explain the grant life cycle process. 

Asset Management 

Asset management is the practice of making the most of capital assets, while also delivering the best customer service. It is essential to establishing sustainable infrastructure. Building an asset management team can lead to increased knowledge management, financial efficiency, and work efficiency. 

Building an Asset Management Team
This factsheet outlines the steps to take to build a functioning asset management team. 

Asset Management: A Handbook
This handbook, designed specifically for small water systems, reviews the basic concepts of asset management and lists tools to help develop a concrete plan. 

Reference Guide for Asset Management Tools
This reference guide is a collection of asset management plan components and implementation tools that drinking water and wastewater systems can use. 

You can find thousands of additional helpful resources in our database.

Maintaining Customer Satisfaction


Maintaining customer satisfaction can go overlooked when operators are busy tending to the daily needs of their facility, however good customer relationships are an important component to any well run utility. Community trust improves cooperation under emergencies and helps customers to do their part in caring for their system. When changes to the utility are made such as a new infrastructure project or a long awaited rate adjustments, customers will more easily hop on board. Not to mention, an unhappy customer can lead to unnecessary public relations (PR) challenges.

In Hartsville, South Carolina one business owner watched for a month as a sinkhole slowly took over her car lot. The owner first called her Water and Sewer Authority in September reaching out about her growing concerns. She made five additional calls into October until finally contacting her local news channel for help. Swiftly after the news channel reached out to the Authority, workers were sent to fix the sinkhole.

In Darlington, South Carolina a pair of homeowners brought their sewer system into the public eye under equally pressing conditions. The city received unprecedented rainstorms in October leading to excess stormwater runoff. Under these conditions, many homeowners experienced sewage backups. Despite the city's ongoing efforts to manage overflows, the backups brought the system into an unwanted spot light. A Sanitary Sewer Overflow Response Plan can help for incidents such as these.

While we can do our best to avoid these incidents, accidents happen. When they do, good communication and listening skills can make a difficult situation much easier. How to Keep Customers Happy in Solution H2O encourages utilities to establish a good public presence prior to these events. When services are disrupted, the article encourages utility leaders to step forward and reassure customers that their complaints are being addressed. We also recommend the supervisor follow up with impacted customers after the issue has been resolved. Many of the negative articles we see published in local news can be avoided by following the tips suggested in the American Water Works Association's publication Trending in an Instant

Defend Your Water System Against Drought


Many states across the United States are currently experiencing one of the worst droughts in American history. Some are even experiencing a "megadrought", meaning that they have been experiencing drought conditions for many years. Climate change also exacerbates drought conditions by increasing the average global temperature and causing irregular weather patterns. Westerns states such as CaliforniaArizonaMontanaNevadaNew Mexico, and Idaho are experiencing some of the most extreme effects. Drought is particularly devastating because it is slow coming but its effects are widespread.

Increased drought conditions can result in:

  • Loss of water pressure and supply 
  • Poor water quality 
  • Limited access to alternative water sources 
  • Increased customer demand 
  • Increased costs and reduced revenues 

For example, in Nevada, the drought has had disastrous impacts on Lake Mead, the largest water reservoir in the United States that currently provides water for over 20 million people across California, Nevada, Arizona, and some of Mexico. The reservoir is now at the lowest it has been since it was filled in 1937 and the situation is so extreme that the federal government is expected to declare an official Lake Mead shortage by the end of the summer. Drought can also negatively impact drinking water providers that rely on lakes because they can increase the number of algal blooms in freshwater. Algal blooms not only contain chemicals that are toxic to humans but large amounts of algae can also clog water filters and damage the water treatment process. 

A total of 31 states are currently experiencing moderate to severe drought across the country. Research also shows that the drought has become progressively worse over the past few decades. The U.S. Drought Monitor website has a feature that allows you to monitor the level of drought happening in your area.

Like most natural disasters, rural and low-income communities are often hit the hardest by drought conditions because of their lack of access to resources and infrastructure. Rural farmers are also greatly impacted by drought because of the lack of water available for irrigation, making it very difficult to support themselves. 

Droughts are a public health issue because they affect access to clean and safe drinking water. Practicing emergency response and preparedness is the best way to minimize severe impacts from drought. To avoid serious impacts from droughts, water utilities should:

  1. Conduct observation and monitoring 
  2. Practice planning and preparedness  
  3. Predict and forecast 
  4. Maintain good communication and outreach with customers 
  5. Use interdisciplinary research and applications 
We've gathered some of the best resources from our library to help you dig in further to this topic.

Resources for Drought Assessment and Resilience

Incident Action Checklist – Drought
This checklist from the U.S. EPA provides various ways for water and wastewater utilities to prepare for, respond to, and recover from a drought. 

10 Ways to Prepare for a Drought Related Water Shortage
This resource from the Rural Community Assistance Partnership lists ten ways to prepare your small water system for water shortages.

Small Water Systems and Rural Communities Drought and Water Shortage Contingency Planning and Risk Assessment
This report can be used to help strengthen your water shortage vulnerability assessments and risk scoring. 

Drought Contingency Plan for a Retail Public Water Supplier
This is a sample form that can be used as a model of a drought contingency plan for a retail public water supplier. 

Drought Management Plan A Template for Small Water Systems
This document outlines mitigation measures that water managers can take to greatly minimize the effects of drought. 

100 Water Saving Tips from “Water. Use it wisely.” 
Communicate some of these water-saving tips to your customers to help them conserve water during a drought. 

Featured Video: How Do They Replace Lead Pipes?


Replacement of lead service lines has dramatically accelerated in recent years due to increased attention on the issue and consequently, enhanced public support and funding for the effort. In this video Denver Water offers a behind-the-scenes look at the process and helps their customers understand what they need to do before, during, and after work in their area.

Operator Educates Millions on TikTok


This wastewater treatment plant operator has gained millions of views on TikTok after posting numerous informational videos on various wastewater topics. His most viewed video on where toilet water goes when you flush gained 12.2 million views. In some of his other videos, he shows behind the scenes at a wastewater treatment plant and what the inside of a manhole actually looks like

This operator is doing a good job at educating the public and specifically young people about wastewater. Wastewater operations make everyday life possible and it's great that more people are interested in what's going on behind the scenes. You can check out this operator on TikTok @waterbearops.

Do you know of any other TikTok accounts from operators? Let us know! 

The Next Generation of Water Workers


The value of clean, safe water (and the essential water workers who provide it) has been in the spotlight during the COVID-19 pandemic. However, according to a report from the Brookings Institution, approximately 3 million workers will need to be replaced within the next decade. Who will be the next generation of water workers? This is a question that the American Public Works Association and many others are thinking about as the current water workforce heads toward retirement

Various entities such as the U.S. Environmental Protection Agency (EPA), the American Public Works Association, and Congress have all been working to tackle this important issue. The U.S. EPA announced its America’s Water Workforce Initiative late last year, using education programs and public outreach to help develop water as a career of choice.

Other organizations like the American Water Works Association and the Water Environment Federation have also been working to tackle this issue. The two collaborated to create the Work for Water website, which has been recently updated, to serve as a fantastic resource to find jobs and prepare individuals for water related careers.    

AWIA Section 2013 Compliance Check


Small community drinking water systems (CWSs) that serve between 3,301 and 49,999 must submit Risk and Resilience Assessment (RRA) certifications by June 30, 2021 and an Emergency Response Plan (ERP) by December 21, 2021 in order to stay in compliance with America’s Water Infrastructure Act (AWIA). Certification must be completed every five years and the ERP updated within six months of that recertification. You can confirm if your water system is impacted by the AWIA on the U.S. EPA website. 

In this era of unpredictability, it is increasingly important to adapt water systems to the ever changing and intensifying events that threats like climate change pose. Building a strong water resilience plan is the best way to prepare yourself and your community against these events. In order to stay ahead of the game, utilities should conduct an assessment to reduce risk, plan for and practice responding to emergencies, and monitor systems for contaminants. 

The AWIA does not require utilities to use any specific tools or methods when conducting these assessments. It does however require utilities to meet all requirements listed in Section 2013 and throughout the act. The U.S. EPA also has more information on how to certify your risk and resilience assessment and your emergency response plan. There is also more information on our website about how to complete your RRA and ERP, as well as information about the AWIA Small Systems Certificate Program.

Florida Security Incident Highlights Need for Cybersecurity Precautions


Oldsmar, Florida made national headlines after experiencing a remote breach of their chemical control system earlier this year.

The hacker, whose identity and intent has not yet been identified, increased the sodium hydroxide feed by more than 100-fold, but the change was quickly overridden by the operator who saw the breach occur. The operator then disabled remote access and contacted local authorities.

This technical brief from the U.S. Department of Homeland Security (shared via Michigan WEA) provides an in-depth overview of incident as well as potential broader impacts, including attacks inspired by the methods used in Oldsmar.

This is just the most recent example of hackers exploiting utility cybersecurity vulnerabilities and undoubtedly you may be wondering if your system is doing enough to prevent this type of intrusion or has the safeguards in place to respond in the event of a breach.

The U.S. EPA released a new Cybersecurity Best Practices page and we recommend the Cybersecurity Incident Action Checklist as the best place to begin your own self-assessment.

Water Operator Vaccination Update

Newsletter Graphics (2).png


By Margaret Golden

When the public thinks about “essential employees” they typically picture healthcare workers, first responders, or even grocery store workers. The water operators that work to keep our water safe and protect public health are also essential, currently classified in CDC’s phase 1C category for vaccine prioritization

The CDC (Centers for Disease Control and Prevention) recently hosted a webinar discussing COVID-19 vaccinations for essential workers, specially those who work in the water sector. Since the vaccine is new and currently in limited supply, the CDC created a list of “essential workers” with various levels of priority in order to ensure that those who are most vulnerable would be able to get the vaccination first. These recommended categories, including water sector professionals as phase 1C,  were developed by the CDC with help from the ACIP (Advisory Committee on Immunization Practices). These guidelines were set up by the CDC to serve as recommendations, as the ultimate timeline decision lies within your local jurisdiction.

Each state has created its own specialized action plan depending on its need for sub-prioritization. For example, areas where large outbreaks have occurred are being prioritized as well as workers with a history of illness. There are also potential exceptions to the timeline. For example, if you are someone that works in a state, county, or local jurisdiction that is different from the one where you live you might be able to get vaccinated where you work. If you are unsure about where you stand in the timeline, you should contact your local public health department.

With COVID-19 vaccines developed in record time, there is understandably some hesitation surrounding it. However, after being tested on a wide range of adults from diverse backgrounds and after being approved by the FDA (Food and Drug Administration), the CDC has determined the vaccine to be safe and effective. Two vaccines are currently available in the United States, from Pfizer-BioNTech and Moderna. The Pfizer and Moderna vaccines both use mRNA technology, meaning that the mRNA instructs the body to produce a harmless piece of the spike protein so that your body can create the antibodies to fight against them. This means that the vaccine cannot give you the virus because there is no live virus in the ingredients. You should also still get the vaccine even if you have had COVID-19 because it can still help prevent you from getting it a second time.  

As we approach the one year anniversary of the first lockdown in the United States, we are lucky to have a vaccine available to protect the workers who ensure our water is safe to drink. When it’s your turn, encourages all water sector professionals to be vaccinated to help stop the spread of this deadly virus. If you have concerns, we recommend contacting and following the advice of your local health department or personal physician.

Lastly, it is important to remember that getting vaccinated is just one of many efforts to be made; we all also need to continue to wear masks, wash hands, stay six feet apart, and avoid crowds, whether you have been vaccinated or not. 

Screens: An Important First Step in a Wastewater Treatment Plant

Blog_Newsletter Graphics.jpg

By Phil Vella

No matter what size wastewater treatment plant you have, screening equipment at the headworks is a necessary requirement. Screens or pretreatment devices are designed to remove or reduce large solids like wood, cloth, paper and plastics from the waste stream. This not only allows downstream treatment process to be more efficient but also protects the equipment such as pumps.

Several different types of equipment can be used to meet these objectives and there is no one-size-fits-all solution that can be applied to every headworks situation. Some of the limitations of small systems are low flows, space and financial considerations. The following will focus on those options most likely to fit into a small wastewater treatment plant. 

As with most equipment at a plant, screens come in a variety of sizes, capacity, automation and cost. In general screens may be classified as coarse, fine and micro and are based on the size of the screening openings. The discussion here will focus on course screen technology with openings 6 to 36 mm (0.25 to 1.5 in.).

Manual Bar Screens

With the limitations of small systems, a manual bar screen may be a great option. These screens have vertical bars approximately 1 to 2 inches apart to catch the incoming debris. Although very basic, they do provide a good level of protection for the plant. An example is shown in Figure 1. However, as with most basic equipment, there are limitations.

Source: Islamic University of Gaza.

The most obvious limitation is that this is a manual operation and requires dedicated manpower and can be a burden to small systems. This is especially true during high flow events such as storms that may require more frequent raking and may also create more of a safety hazard for the operator.

Automatic Bar Screens

To limit the labor involved with manual bar screens, there are several automated options available. These can be classified into different group types. Chain Driven Screens, Catenary Screens, Reciprocating Rakes, Continuous Belt Screen and many variations of them. A summary of different types of screens with their advantages and disadvantages is given in Table 1. These options also commonly use vertical bars to capture the solids and remove them with an automated raking system. Since these are automated, the cost and other operational costs must be considered. In addition, these systems are larger than the manual screen so adding this to a facility may require civil engineering to modify the influent channel or the headworks building if placed there. You may have reduced the labor cost but have increased the capital and infrastructure expense.

Although course screens can remove large material at the head works, disposal of this material becomes and added cost and requires operation and maintenance.  In addition, the wet screenings collected are smelly that can attract vermin and result in odor complaints from the community. 





Design in the market for many years
Simple channel construction
High screenings loading rate
Insensitive to Fat, Oil, and Grease (FOG)
Low headroom required

Submerged components subject to wear and tear


No critical submerged components
Widely used

Low screening loading rate
High overhead clearance, particularly at deep channels


Medium to low headroom required
Allows a pivot design for servicing the unit above the channel

Several moving components
Components subject to wear and tear


Simple design
Lower capital and operational cost
No drive parts under water Utilizes 100% of channel width

Limited to small to medium flow plants
Not suited for deep channels


Simple to operate
Easy to maintain

Chains are very heavy and difficult to handle
Large footprint

Source: WEF, Manual of Practice 8, 2017

The following are examples of some of the screen options available to wastewater treatment plants.

Multi Rake Chain Driven Bar Screen (Automatic/Self Cleaning) Source 

Multi Rake Automatic System



Reciprocating (Single/Basket) Rakes | Source

Catenary Bar Screen | Source

Arc Screen | Source

In summary, there is no right equipment choice for all headworks screening circumstances. Individual factors such as flow rate, solids loading, cost and infrastructure modifications must be considered. Choosing the correct option is important not only in protecting downstream equipment but also for efficient and effective solids removal resulting in proper wastewater treatment.