rss

WaterOperator.org Blog

PFAS Treatment: What We Know in 2023

Blog Post Template- PFAS.png

PFAS (formally known as per- and polyfluoroalkyl substances) are widely used, long lasting chemicals that break down very slowly over time. They break down so slowly that they end up in water, air, fish, and soil all over the world, and trace amounts have even been detected in human blood. Scientific studies have shown that exposure to some PFAS in the environment may be linked to harmful health effects in humans and animals, but we do not know to what extent they may affect us.

PFAS possess chemical properties that mean traditional drinking water treatment technologies are not able to remove them. Researchers have been working on a variety of treatment technologies to determine which methods work best to remove PFAS from drinking water. Some of the most successful methods include: activated carbon adsorption, ion exchange resins, and high-pressure membranes. 

Granular activated carbon (GAC) adsorption: GAC has been shown to effectively remove PFAS from drinking water when it is used in a flow through filter mode after particulates have already been removed. According to EPA researcher Thomas Speth, this method can be extremely effective “depending on the type of carbon used, the depth of the bed of carbon, flow rate of the water, the specific PFAS you need to remove, temperature, and the degree and type of organic matter as well as other contaminants, or constituents, in the water.”

Ion exchange resins: Negatively charged ions of PFAS are attracted to positively charged anion resins. Anion exchange resins (AER) have proved to have a high capacity for many PFAS; but this method can be more expensive than GAC. The most promising version of this method is an AER in a single use mode, followed by incineration of the resin. This technology has no contaminant waste stream to treat or dispose due to the lack of need for resin regeneration.

High-pressure membranes: Research shows that membranes, such as nanofiltration or reverse osmosis, are typically more than 90 percent effective at removing a wide range of PFAS. However, these methods generate a large volume of high-strength waste stream which can be difficult to treat or dispose of for a water system. This technology may be better suited for a homeowner since it would generate a much smaller volume of waste.


PFAS Resources:

  • Drinking Water Treatability Database
    • The Drinking Water Treatability Database (TDB) can be used to identify effective drinking water treatment processes, to plan for future treatment plant upgrades, to provide information to first responders for spills/ emergencies, and to recognize research needs.
  • PFAS Analytic Tools hub
    • This page contains location-specific information related to PFAS manufacture, release, and occurrence in the environment as well as facilities potentially handling PFAS.
  • CWA Analytical Methods for Per- and Polyfluorinated Alkyl Substances (PFAS)
    • This page contains information regarding the EPA’s development of new analytical methods to test for PFAS compounds in wastewater, as well as other environmental media.

Most Clicked Links from the Innovations Newsletter

cyanobacteria.jpg

With growing efforts to enhance water quality and to protect public health, 2021 brought many new innovations to the water sector. From innovative PFAS treatment technologies to enhanced wastewater surveillance to track the spread of COVID-19, the following list highlights the most accessed resources featured in the Innovations for Small Systems newsletter's 2021 archive.

Small Drinking Water Systems Webinar Series
A webinar series hosted by EPA to communicate the latest information on solutions for challenges facing small drinking water systems.

EPA Cybersecurity Best Practices for the Water Sector
EPA published a webpage featuring resources to help water and wastewater utilities implement cybersecurity best practices. This new page contains various cyber resilience resources available from EPA.

Tracking SARS-CoV-2 RNA through the Wastewater Treatment Process
This paper presents data on SARS-CoV-2 RNA concentration and removal rates during the different stages of the activated sludge wastewater treatment process to better understand the fate of the virus at the different stages

EPA Drinking Water Treatability Database (TDB)
The TDB presents an overview of over 120 regulated and unregulated contaminants found in drinking water with current information on treatment processes. EPA updated the TDB on May 19 to include new references and treatment options for PFAS.

Expedited Approval of Alternative Test Procedures for the Analysis of Contaminants Under the Safe Drinking Water Act; Analysis and Sampling Procedures
On May 26, EPA approved 17 alternative testing methods for use in measuring the levels of contaminants in drinking water to determine compliance with national primary drinking water regulations.

EPA Identifies Drinking Water Contaminants for Potential Regulation
EPA announced the Draft Contaminant Candidate List 5 (CCL 5) on July 12 to include 66 individual chemicals,12 microbes, and three chemical groups – per- and polyfluoroalkyl substances (PFAS), cyanotoxins, and disinfection byproducts (DBPs).

Performance of rapid sand filter – single media to remove microplastics
This paper aims to analyze the effectiveness and mechanism of rapid sand filters (RSF) for the removal of microplastics (MPs) during drinking water treatment and analyze the effect of research variables on the performance of filter media. 

Cyanobacteria Assessment Network Application (CyAN app)
On August 3, EPA launched the CyANWeb Application, which is an easy-to-use web browser-based tool that provides access to cyanobacterial bloom satellite data for over 2,000 of the largest lakes and reservoirs in the United States.

Tap Talk: The Drinking Water in Rural America Podcast
The Private Well Class program has launched a new podcast series, Tap Talk, which highlights the unique challenges which small public water systems and many private well users experience.

18th Annual EPA Drinking Water Workshop: Small System Challenges and Solutions
This free, annual workshop, which was presented virtually in September, provided in-depth information and training on solutions and strategies for handling small drinking water system challenges. This workshop will be virtual again for 2022.

Zapping Untreated Water Gets Rid Of More Waterborne Viruses
Texas A&M University researchers published a paper in September 21, where they highlighted their research validating the effectiveness of Iron Electrocoagulation in the removal of viruses from water.

EPA Awards $6 Million in Funding to Research Human Viruses Found in Wastewater Intended for Reuse
EPA announced on October 27 that five grants have been awarded funding to research on existing and novel alternative methods to detect and monitor viruses that are excreted with feces in wastewater intended for water reuse applications. 

ASDWA Publishes New PFAS MCLs White Paper for States that are Considering or Developing PFAS Drinking Water Standards or Guidelines
ASDWA published a PFAS Maximum Contaminant Levels (MCLs) White Paper on November 5, to serve as a resource for states that are developing or considering developing PFAS drinking water MCL regulatory standards or guidelines.

EPA Announces Over $3 Million in Funding to Small Businesses to Develop Environmental Technologies
EPA announced on December 14 that 30 American small businesses will receive funding to develop novel technologies to address pressing environmental and public health problems such as domestic greywater, microplastics, and lead service lines.

Nutrient Smart Recognition Program
WEF and EPA launched the NutrientSmart (NSmart) program in December to help reduce nutrient loadings in waterways by encouraging the adoption of enhanced nutrient management practices by water utilities and distributing information on tools and methods for lowering nutrients.

Fifth Unregulated Contaminant Monitoring Rule
EPA published the fifth Unregulated Contaminant Monitoring Rule (UCMR 5) on December 27 to better understand the national occurrences and levels of 29 PFAS found in the nation's drinking water systems.

Check out past issues of the Innovations newsletter.

Studies Track PFAS Through Wastewater Facilities

pfas-wastewater.png

This article was featured in a recent edition of Innovations for Small Systems, our monthly water technology newsletter.

University of New Hampshire (UNH) researchers have conducted two of the first studies in New England to show that per- and polyfluoroalkyl substances (PFAS) are ending up in the environment differently after being processed through wastewater treatment facilities, making it more challenging to set acceptable screening levels.

Researchers including Paula Mouser, associate professor of civil and environment engineering at UNH, aimed to highlight the gaps around contaminants of emerging concerns (CECs) in wastewater residuals and to stress that more research is needed to assess the impact of facility design and operation on the treatment of CECs before costly upgrades are implemented to comply with stricter drinking water standards. 

The first study, which was recently published in The Royal Society of Chemistry, investigated the distribution and fate of 24 different PFAS through six New Hampshire wastewater treatment facilities to examine how they are distributed after being treated. The study aimed to characterize PFAS in wastewater treatment influent, sludge, and effluent discharging into the Great Bay Estuary in southeastern New Hampshire. 

The second study, which was featured in the New England Water Environment Association Journal, evaluated the changes in 24 PFAS and 21 pharmaceutical and personal care products (PPCPs) during wastewater treatment and assessed the composition of PFAS in biosolids post-stabilization treatment. Recent studies have suggested PPCPs and PFAS from land-applied biosolids may accumulate in soils, agricultural crops, and food products. This study compares the composition and concentration of PFAS from 39 biosolid samples collected from WWTFs in New Hampshire and Vermont.

Photo Credit: Conservation Law Foundation

What Operators Should Know about PFAS in 2019

Specify Alternate Text

In February of 2019, the EPA released an action plan to manage the contamination of poly- and perfluoroalkyl substances (PFASs) in water. The plan will propose an MCL regulatory determination for perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) detected under the UCMR3 by the end of 2019 and will continue environmental cleanup.

The UCMR3 found that areas with affiliated industrial sites, military fire training, and wastewater treatment plants were associated with PFOA and PFOS detection. Once released, PFASs can persist in the environment for the long periods of time, bioaccumulating in humans and animals that consume contaminated drinking water. A new health advisory for these chemicals has set the maximum recommended concentration in drinking water at 70 ppt. Exposure above this threshold may cause developmental defects, cancer, liver damage, immune issues, metabolic effects, and endocrine changes. 

Unfortunately, a health advisory is not enough to protect consumers from PFAS in drinking water as it does not legally require utilities to take action against unsafe levels. In the absence of necessary regulatory authority, several states have pushed forward with their own policies. These states have struggled with how to implement a standard without clear federal guidelines. Despite this, many states are working to set or have already set their own maximum contaminant levels. 

Options for reducing exposure to elevated PFAS contamination include changing sources, closing off contaminated wells, alteration of blending rates, or implementation of treatment. Studies have found that granular activated carbon (GAC), ion exchange, or membrane separation can treat PFAS. The removal efficiency can reach 98-99%, but it will ultimately depends on the length of the PFAS chain and the treatment method used. Installing a new treatment method is financially devastating for many systems. Alabama’s West Morgan East Lawrence Water and Sewer Authority (WMEL) estimates that the costs to install a permanent R.O. filter will reach $30-50 million. The authority has filed a lawsuit that could assist with funding the necessary upgrades.


There is currently no standardized analysis approved for PFAS testing in drinking water, however laboratories have modified the EPA groundwater detection method 537 for systems in need of monitoring. When using this method, the EPA recommends that systems “evaluate its appropriateness relative to your goals for the data.” In some locations PFAS regulators and manufacturers have also set up programs to monitor groundwater contamination. You can contact your state primacy to learn about these types of resources. 

If test results repeatedly indicate water concentrations of 70 ppt or greater for either contaminant, systems should follow any existing state regulations and promptly notify their primacy and customers. In absence of regulations, c
ustomers should be informed of the health effects and advised to consume bottled water until a better option is available. Download a consumer-friendly fact sheet from CDC.

What's on the Drinking Water Radar for the Year Ahead: 2019

Specify Alternate Text

Being a small-town water operator is not easy; it is up to you to ensure the quality of your community's water day-in and day-out, often with very limited resources. Let WaterOperator.org help you meet the challenge head-on with this list of tools and resources to put on your radar for the year ahead:

  • Have you gotten in the groove yet with the new RTCR requirements? Here are two new documents from the USEPA designed to help small public water systems: Revised Total Coliform Rule Placards and a Revised Total Coliform Rule Sample Siting Plan with Template Manual. Additional compliance help, including public notification templates, a RTCR rule guide, a corrective actions guidance and more can be found here.
  • While we know your hands are full just getting the job done, there are new and emerging issues you may have to deal with in the year ahead. For example, this past year many communities have been dealing with PFAS contamination issues. This ITRC website provides PFAS fact sheets that are regularly being updated on PFAS regulations, guidance, advisories and remediation methods. Especially of interest is this excel file that has begun to list the different state standards and guidance values for PFAS in drinking water as they are developed. Be sure to check back often for updates.
  • Your utility may also have to adjust to new compliance rules in the coming year. In Michigan, for example, a new Lead and Copper Rule arising from the water crisis in Flint has gone into effect, making it the strictest in the nation. Other states, such as Ohio, have also adopted tougher standards, or are now requiring schools to test for lead. Oregon has established temporary rules that will require drinking water systems in the state using certain surface water sources to routinely test for cyanotoxins and notify the public about the test results.
  • With a warming climate, these incidences of harmful algal blooms in surface water are on the increase, causing all sorts of challenges for water systems that now have to treat this contaminant. This cyanotoxin management template from the EPA can help assist you with a plan specific to your location.
  • Worker turnover and retirements will still be an issue in 2019. According to this article, the median age for water workers in general (42.8 years) and water treatment operators specifically (46.4 years) are both above the national average across all occupations (42.2 years). You can keep transitions as smooth as possible by using EPA's Knowledge Retention Tool Spreadsheet and/or this Electronic Preventive Maintenance Log.
  • New Tech Solutions: A UMass lab focusing on affordable water treatment technologies for small systems will be rolling out its Mobile Water Innovation Laboratory in 2019 for on-site testing. In addition, the facility is testing approaches to help communities address water-quality issues in affordable ways. "Early next year, in the maiden voyage of the mobile water treatment lab, UMass engineer David Reckhow plans to test ferrate, an ion of iron, as a replacement for several water treatments steps in the small town of Gloucester, MA.

But even without all these challenges and new ideas for the future, simply achieving compliance on a day-to-day basis can be tricky - if this sounds familiar, you may want to check out our recent video on how operators can approach the most common drinking water compliance issues.

The Problem With PFCs

Specify Alternate Text

There certainly has been lots of buzz over the scope and extent of perfluorinated chemical (PFCs) contamination of drinking water lately. A Bloomberg Environment analysis of EPA water contaminant data found 65 water utilities in 24 states and territories had at least one sample that came back above the threshold for these chemicals. Altogether, these utilities serve more than six million people. According to one Center for Disease Control official, the presence and concentrations of these chemicals is "one of the most seminal public health challenges for the next decades."

So what do we know about PFCs, then? PFCs are a family of synthetic chemicals used in a wide variety of products such as textiles, packaging, and cleaning products and are also additives in coating/plating processes. One of their most significant uses has been as a compound in firefighting foams used to put out jet fuel fires. In fact, most of the communities dealing with this contamination are ones that rely on groundwater and are located near military installations or airports.

Although scientists are still studying the link between PFCs and certain health issues, some research suggests that exposure to these chemical compounds can cause cancer, and/or liver, thyroid, pancreatic, kidney and fertility problems, among other things. Moreover, PFCs are stable in the environment and resist degradation, allowing them to seep out of underground storage tanks and build up in the bodies of animals and humans.

While the U.S. EPA has issued health advisories of 70 parts per trillion (ppt) for PFCs in drinking water, it is still evaluating health effects before taking any further action. These advisories are designed to provide drinking water system operators, and state, tribal and local officials who have the primary responsibility for overseeing water systems, with information on the health risks of these chemicals, so they can take the appropriate actions to protect people. But just exactly who will pay for these actions, or how the money will be located in the first place, is undetermined. The Seattle suburb of Issaquah, WA, for example, has already paid $1 million to install filters on its wells, and unless income can be generated from legal claims, this will certainly affect their customers' water bills.

Earlier this year, U.S. Senator Shaheen (D-NH) introduced the Safe Drinking Water Assistance Act, bipartisan legislation that will help expedite the analysis of PFCs, and provide resources to states dealing with the health challenges posed by these potentially harmful substances. And last week, the President signed H.R. 2810 which includes an amendment for a nationwide health study to be conducted by the CDC on the implications for PFCs in drinking water. In addition, some states, such as Michigan, are creating multi-agency response efforts to address this rapidly evolving public health issue.

If you need more information about PFCs, a good place to start is this EPA website or video. In addition, EPA has published a new fact sheet entitled “Protecting Public Health & Addressing PFAS Chemicals,” to provide basic information to the general public. And the AWWA has its own fact sheet on the prevalence and assessment of perfluorinated compounds in drinking water, as well as this listing of resources for identifying and managing PFCs.