rss

WaterOperator.org Blog


User
User
's Blog

Creating O&M Manuals that Actually Get Used

This is a 2013 guest post from Angela Hengel, a Rural Development Specialist with RCAC. 

Background
Small community water systems face a variety of problems and challenges quite unlike anything their larger counterparts must face. With fewer customers to share the costs of running the system, smaller water systems suffer from economy of scale. These utilities often struggle to maintain water quality, water quantity, and system infrastructure. 

Decreased revenue also means that small water systems are often faced with the inability to provide equitable pay to their operators resulting in frequent turnover and a subsequent loss of system knowledge and experience. Adding to that problem, small systems often cannot afford the time and resources required to create adequate standard operating procedures for their system. This issue can have a devastating effect on a utility as new operators have few useful guidance documents to assist them with learning operations, maintenance and repairs. As regulations become more stringent and the associated technologies more complex, the need for well developed, user friendly operating procedures becomes even more apparent. 

The Search for a Solution
RCAC technical assistance providers work with small community systems on a daily basis and are familiar with the challenges they face. Through these relationships, it became clear that the lack of informative and easy to use operations and maintenance (O&M) manuals was a recurring roadblock for small systems striving to become sustainable. RCAC was faced with a question, how to develop an O&M manual that captures system information in a method that is easy to use and understand?

To start, RCAC looked at basic O&M manuals for small treatment plants and drew some conclusions: while they contained system information, they were often bulky, difficult to navigate, and very generic. This was particularly true when it came to manufacturers’ O&M manuals. 

Another aspect that RCAC noted was the tendency for manufacturers’ O&M manuals to be written with either too much engineering language or without any engineering thought at all. As noted by RCAC Rural Development Specialist and professional engineer Leon Schegg, “What we came across were catalog cuts from particular equipment manufacturers but very little information specific to that system,” said Schegg. “Some of the materials handed over were actually sales brochures.” As a result, these manuals were more often than not left by operators to collect dust on a bookshelf.

RCAC realized that a new approach was necessary. There had to be a way to enhance O&M manuals in a manner that is both technically sound and user friendly. For RCAC Regional Environmental Manager Dave Harvey the answer was easy. “I am a do-it-yourself kind of person,” said Harvey. “I love to tinker on my bike and my vehicles at home and my go-to place is always YouTube. I would much rather watch a video of how to repair my bike than read a manual. It’s fast, easy and accurate.” And with that, the RCAC video O&M manual was born. 

Making the Manuals
The idea of a video O&M manual was immediately welcomed by small water system managers and operators. With funding from Indian Health Service (IHS), RCAC began development of video O&M manuals for three tribally-owned small treatment plants. 

Video O&M Introduction from RCAC on Vimeo.

"Our intent was not to do away with the written manuals but rather to enhance them by integrating them with video demonstrations filmed on site at the treatment plant,” Harvey said. The result: highly individualized O&M manuals that provide not only written information, but detailed yet easy to follow video instructions on plant operations and maintenance. 

RCAC took a holistic approach to creating the manuals. Each individualized O&M manual is created through a collaborative of RCAC technicians, utility operators, IHS engineers, contractors and manufacturer technical representatives. Filmed onsite by RCAC videographers and finished in the RCAC graphic arts department, each manual is a one-of-a-kind visual training tool. With it, small system staff with limited technical skills can learn their system’s requirements and follow step-by-step maintenance procedures using a menu-driven CD containing text, photography, video and the internet. 

There were challenges to be met along the way in the creation of the manuals. “It was kind of like a movie set. We had to get all parties on site and organized and ready to go when it was time to film,” said RCAC’s Eagle Jones. “We had to deal with road noise, lighting, people forgetting their lines and just getting used to the idea of being on camera,” Jones said. “It took a few shoots and we had to go back and re-shoot a few sections, but in the end we produced some really great video.”

Bringing the video and written manual together in a cohesive and organized manner presented its own set of difficulties. “It was important that the manuals were designed in a way that would build the operators’ trust so that they actually use them,” said Schegg. “We inserted flags in the text of the manuals directing the user to a video.” 

One of the issues RCAC had to overcome was that the manuals being provided by equipment manufacturers often contained information that was different than plant operations. According to Schegg, “The videos were documenting actual maintenance procedures that were not in the manufacturers’ manuals.” This was particularly true with plant start-ups. “Problems arise during plant start-up that may not be known during the design phase or when the manufacturer put together their operations and maintenance manual,” said Schegg. “We see and resolve inconsistencies between the plans, manufacturers’ literature and recommended settings so that our manuals present the actual process and equipment operating and maintenance procedures necessary at your site.”

The Outcome
Once the video O&M manuals were completed, RCAC returned to the systems to review the manual with the operators. “We don’t just say, ‘Here’s your manual’” says Harvey. “We sit down and review every section with system operators to ensure that the information in the manual and video is completely accurate and, more importantly, that the operators understand how to use it.”

The Campo EPA department recently received a completed video O&M manual. Melissa Estes, Campo EPA Director, commented on the decision to have RCAC create the manual, “IHS recommended RCAC. The bid we received from RCAC was very reasonable compared to other consultants.  RCAC met with the Tribe’s Executive Committee and the Committee decided RCAC were experienced working with tribal governments and would do a good job, so the Committee approved the contract.   Since the Tribe and the tribal EPA had worked closely with RCAC on other projects we felt they would do an outstanding job.” 

In reference to the actual manual, Estes referred to it as being, “very user friendly,” and went on to note, “This manual will accommodate people who learn from reading, and others who learn from seeing.  The format is helpful for people who like to read directions or see them on a video. It is very helpful to have a manual specific to the system you operate, with actual demonstrations of how to operate the components.” 

RCAC knew that a video O&M manual would provide several benefits to small systems such as; increased operator technical capacity, a more effective preventive maintenance program, a more effective emergency maintenance program, a more accurate ability to budget for parts and labor, and having an enhanced training tool for new operators that acts as a safety net should the system find themselves one day without an operator. 

Still there were other, unexpected benefits that came about during the creation of these manuals. By bringing together engineers, operators, contractors, and technical representatives and analyzing the processes, each party began to get a better understanding of their role as it interrelates to other roles. As Schegg states, “The manual brings together documented and undocumented procedures from the standpoint of an operator which proved to be a tool not only for the operator but also engineers and contractors who use the information to modify those processes in the future and hopefully have an advantage when starting a new design.”

The Future
With the success of the three video O&M manuals, RCAC has plans for not only creating more treatment plant manuals, but to expand to other utility operations. “We are currently in the process of finishing a wastewater treatment plant manual and putting together proposals for creating distribution system manuals using the same video format,” Harvey said.

As for whether or not other systems would be interested in video O&M manuals, “Almost 100% of the managers and operators I have talked with would prefer to have an O&M manual with video integrated into the text,” states Harvey. And when asked if she would recommend this style of O&M manual to other systems, Estes replied, “Yes, we would recommend this style to other water systems.” 

Developing and Implementing Tools for Small Systems to Evaluate and Select Appropriate Treatment Technologies

Water utilities can struggle to know which treatment technologies to consider and then which one to select and implement to solve their water quality and compliance challenges. This is particularly challenging for small water systems without resources to stay up-to-date on the range of appropriate technology options and their associated treatment and operational performance. The DeRISK Center is dedicated to addressing this challenge by developing and implementing tools for small systems to evaluate and select appropriate treatment technologies. These tools are designed to help utilities, states, consultants, and technology providers make technology selection decisions based on public health protection and sustainability beyond just regulatory compliance.

A conventional analysis of technology alternatives is typically performed when water systems need to upgrade or replace major treatment facilities. This analysis consists of identifying the feasible alternatives that will accomplish the treatment goals, comparing the alternatives based on some criteria, and selecting the “best” alternative. The criterion most used is cost—capital cost, operation and maintenance cost, or an engineering life-cycle cost analysis that includes the anticipated life-span of major equipment.
 
The DeRISK Center tools employ a decision support methodology that improves on this conventional approach. The major steps in the methodology are deciding what criteria are most important to stakeholders and providing and easy way to compare technology alternatives to each other with respect to each criterion. Our approach strives to go beyond just a comparison of costs. As shown in Figure 1, the decision support methodology expands on the conventional analysis of alternatives process by including:
  • Facilitated methodology that incorporates stakeholder input
  • Data on innovative treatment technologies
  • Relative health risk protection of treatment approaches
  • Sustainability measures of treatment approaches
  • Stakeholder preferences

Performance information such as treated water quality and performance data along with other characteristics, including source water quality constraints, are used to identify feasible technology alternatives. The characteristics for feasible alternatives are then fed into the analyses of health risk, sustainability, and stakeholder preferences in order to provide data to the decision support methodology.  
 
Microbial and chemical agents in drinking water can pose significant human health risks. Evaluating the combined impacts from multiple contaminants can provide new insights into how best to manage that risk and protect public health to meet regulatory compliance and achieve the greatest risk protection possible given feasible alternatives. The DeRISK Center tools utilize the Relative Health Indicator (RHI)—a semi-quantitative metric developed to harmonize the cancer and non-cancer impacts from a wide range of drinking water contaminants—to compare the relative health risks posed by multiple waterborne constituents.
 
The DeRISK Center is also focused on analyzing and improving the environmental and economic sustainability of small drinking water treatment systems. To achieve this, life cycle analysis (LCA) methodology is being used to quantify and characterize environmental impacts associated with various drinking water technologies. These impacts (using EPA’s TRACI assessment method) include ozone depletion (kg CFC-11 eq), global warming (kg CO2 eq), smog (kg O3 eq.), acidification (kg SO2 eq.), eutrophication (kg N eq.), carcinogenics (CTUh), non carcinogenics (CTUh), respiratory effects (kg PM 2.5 eq.), ecotoxicity (CTUe), and fossil fuel depletion (MJ surplus). A comprehensive LCA model framework was developed utilizing water treatment data, experience, and commercial information.
 
Last, the DeRISK Center is putting these tools to the test evaluating treatment technology decisions through cases studies with actual small water systems needing to address water quality and compliance challenges. The first case studies are assessing disinfection alternatives for small water systems in New Hampshire. 

If you are interested in testing these tools and collaborating with DeRISK Center researchers to assess treatment technology alternatives for your water system, please contact Chad Seidel at chad.seidel@colorado.edu

In-Line Diffused Aeration to Reduce THMs in Distribution Piping

This post from University of New Hampshire's M.R. Collins is a continuation of a project update originally shared in our Technology News newsletter. 

Several methods exist for controlling THM formation, including reducing natural organic matter (NOM) prior to chlorine disinfection, and using an alternate disinfectant such as ozone, chloramines, or UV. Using these disinfectants will prevent or reduce the formation of THMs, but could facilitate the production of other potentially harmful byproducts.  Also, using ozone or UV as a disinfectant will not provide a residual in the distribution system (USEPA, 1981 & USEPA, 1999).  While effective at reducing THM formation, changing or upgrading the water treatment plant to include these control techniques could be costly and negatively affect other plant processes.

Posttreatment aeration is another strategy to control THMs, and involves removing the THMs after formation.  Countercurrent packed towers, diffused aeration in open reactors, and spray aeration in storage tanks are all viable aeration methods to remove THMs (USEPA, 1981 and Brooke & Collins, 2011).  While the above methods are viable and have been applied in the field, all require depressurization of the water, and are limited in terms of placement in the water distribution system.  Placement in the distribution system is important since THMs continue to form in the system, and often exceed regulations when at the far end of the system.  This research explores both vertical in-line diffused aeration (VILDA) and horizontal in-line diffused aeration (HILDA) to reduce THMs, which has the potential to be cost effective and conveniently placed where needed in the distribution system.

A schematic of an in-line diffused aeration system is depicted in Figure 1. The basic components consist of an air compressor, air-water reactor, air injector, air release system and associated air and water flow meters. The basic difference between VILDA and HILDA systems is the configuration of the air-water reactor. The VILDA system will utilize a countercurrent arrangement where air is injected in the bottom of the vertical reactor while the water enters at the top of the reactor. The HILDA will have air and water flowing concurrently through the horizontal reactor.

Figure 1. Schematic of basic in-line diffused aeration system. 

The most efficient air-water reactor is one where equilibrium or saturation THM removals can be achieved. The work of Matter-Müller et al. (1981) provides a mass balance method which allows equilibrium or saturation THM removal values to be predicted as depicted in Equation 1:

Equation 1:                             

where QG = the gas flow in (m3/s), Hcc = the dimensionless Henry’s law constant of compound, and QL= the liquid flow rate (m3/s). Hence, the higher the air/water ratio, the greater the removals of THMs.

For Equation 1 to be applicable to distribution piping conditions, the Henry’s Law Constant will have to be adjusted for both temperature and pressure. The former has been well documented in the literature but the latter had to be determined during this research. Basically, a second order relationship as shown in Equation 2 was used to correct for pressure (Zwerneman, 2012).

Equation 2:                                

where Hcc  = the dimensionless Henry’s law constant at system pressure, Hcc,o   = the dimensionless Henry’s law constant at atmospheric pressure, P = the system pressure (psi), and k= the experimentally determined rate constant (psi-1).

HILDA REACTOR DESIGN. The most problematic concern with a HILDA system was to configure an air-water reactor where equilibrium or saturation conditions will be achieved since injected air in a horizontal pipeline will have a strong tendency to raise to the top of the pipe and not be mixed with the water sufficiently to reach saturation. Through trial and error, Komax static mixers were determined to provide adequate air-water mixing to approach saturation removal conditions provided fluid turbulence or mixing intensity was high enough. A modified Reynolds Number (Re’) was developed to capture the magnitude of fluid momentum and mixing intensity and can be seen in Equation 3 (McCowan, 2015).

Equation 3:                                           

where, v= velocity of water (ft/s), d=pipe diameter (ft), Lm=length of reactor (ft), and v=kinematic viscosity (ft2/s). Figure 2 shows a graphical representation of % removal vs. Re’ at 10:1 and 20:1 A:W ratios.  Re’ appears to be a good indicator of when saturation values are achieved and could be used to design of the HILDA reactor.

Figure 2. HILDA model predictions of THM removals for various A:W ratios as a function of modified Reynolds Number.

VILDA REACTOR DESIGN. Equilibrium or saturation removal conditions in a VILDA system is easier to achieve than with a HILDA system although a HILDA system could be easier to install in the field. The countercurrent flows in a VILDA reactor encourages adequate contact time between the air bubbles and bulk water to achieve saturation conditions quickly as depicted in Figure 3. Basically, in-line diffused aeration is a fast treatment process.

Figure 3. Influence of A:W ratios on VILDA EBCTs required to reach saturation THM removals.

SUMMARY. Both HILDA and VILDA have shown potential to achieve significant reductions in THMs in distribution pipelines especially if the most dominant species is chloroform. Research on bench and pilot scale versions of these posttreatment aeration systems have resulted in prediction models that could be used to design HILDA and VILDA reactors in the field. Field assessment and treatment verification of this innovative technology are currently being explored and developed. Opportunities to participate in these assessment studies are still available. Please inquire within.

REFERENCES

Brooke, E. & Collins M.R., 2011. Posttreatment Aeration to Reduce THMs. Journal AWWA, 103:10.

Komax Systems, Inc. Triple Action Static Mixer. http://www.komax.com/triple-action-static-mixer/ (accessed 3/31/15).

Matter-Müller, C.; Gujer, G.; Giger, G., 1981. Transfer of Volatile Substances from Water to the Atmosphere. Water Research, 15:1271.

McCowan, M.L.,2015. Developing a Horizontal In-Line Diffused Aeration System for Removing Trihalomethanes from Water Distribution Mains. Master’s Thesis, University of New Hampshire, Durham, N.H.

USEPA (United States Environmental Protection Agency), 1999.Alternative Disinfectants and Oxidants Guidance Manual. EPA 815-R-99-014.

USEPA (United States Environmental Protection Agency), 1981. Treatment Techniques for Controlling Trihalomethanes in Drinking Water. EPA/600/2-81/156, Washington, DC.

Zwerneman, J., 2012. Investigating the Effect of System Pressure on Trihalomethane Post-Treatment Diffused Aeration. Master’s Thesis, University of New Hampshire, Durham, N.H.

Common Distribution System Deficiencies

This article was first published in the Winter 2012 issue of Spigot News, the Ohio EPA's drinking water program newsletter. Many thanks for allowing us to republish it! You may also be interested in the articles Common Source Water Deficiencies and Common Treatment Deficiencies

This article is a continuation of the series on common deficiencies, covering source, treatment and distribution deficiencies. This article covers different aspects of the distribution system, including cross-connection, backflow, depressurization events, water age and infrastructure deterioration. 

Cross-connection
A “cross-connection” occurs in areas of the plumbing system where non-potable water comes in contact with potable water. There are two types of cross-connections: direct and indirect cross-connections. 

Direct cross-connections – the potable system is permanently connected to a non-potable system (for example a submerged inlet pipe for a chemical feed system). 

Indirect cross-connections – there is a potential for a connection of the potable system to a non-potable system (for example, a garden hose connected to an outside hose bid without a vacuum breaker or a bidet with a douche sprayer or jet that fills the bowl below the rim). 

Establish cross-connection control ordinances for municipalities with diligent inspections of new and existing plumbing to prevent possible cross-connection issues. These issues may be identified during a sanitary survey or when real estate is bought and/or sold within the municipality. 

Backflow and Backsiphonage
A “backflow event” is when non-potable water is forced by pressure into the potable water supply due to a direct cross-connection. All distribution systems must maintain a minimum pressure of 20 psig and a 35 psig working pressure during all water demands including fires. Distribution systems that fall below these minimum pressures may experience a backflow event if an overpowering pressure differential is experienced by a competing cross-connection within the system. 

A “backsiphonage event” is when water flows backward in the water distribution system from a vessel or other contamination source because the distribution system has lost, created or reduced pressure. 

Backflow devices (backflow preventers, double check valves, testable reduced pressure zone device, etc.) are required on certain businesses that pose the most threat to a potable water system, but municipalities can require all businesses and homes within their jurisdictions to install and inspect backflow devices every 12 months. Another preventative measure may be to conduct a hydraulic assessment of the distribution system to identify those areas at most risk of a backflow event. Once identified, these areas can be targeted for improvement.  

Depressurization Events
System-wide depressurization events are rare but can occur when mains break or electrical power is lost. When an event occurs, it is strongly recommended to issue a boil alert to those affected. Public water systems can issue a boil alert without consulting Ohio EPA, but boil alerts that affect a major portion of the distribution system must be reported within 24 hours. The municipality may lift voluntary boil alerts after the system is pressurized and the designated operator clears the system for providing drinking water. (Editor's Note: Please see your state agency for reporting requirements that affect you.)

The best way to avoid a depressurization is to keep the water and power flowing. When all power is lost through the electrical grid an alternate source of energy that will run the treatment plant and the distribution system critical components, such as a generator, is an excellent choice. 

Water main breaks are resolved by isolating the break quickly while maintaining water pressure to the rest of the system. This approach works well when all valves are accurately identified and working properly. A valve exercising program identifies the valves and keeps them working correctly in case they are needed. 

Water Age
The issues related to water age are directly attributable to water quantity and quality needs. These vital needs are always in conflict because quantity objectives dictate excessive storage issues while quality strives to minimize storage time while maintaining appropriate disinfectant residuals. Public water systems must strike a balance to minimize water age, effectively limit the formation of disinfection by products (DBPs) such as HAA5s and TTHMs, and keep disinfectant residuals within regulatory limits. 

A Distribution System Optimization Plan (DSOP) offers a mix of options for public water systems to meet quantity and quality standards by optimizing treatment and storage capabilities. OAC Rule 3745-81-78 (Note: This is now a rescinded Ohio regulation.) details the DSOP requirements and options. For more on sanitary surveys for small water systems, read Preparing for a Sanitary Survey for Small Public Water Systems.

Common Treatment Deficiencies

This article was first published in the Summer 2012 issue of Spigot News, the Ohio EPA's drinking water program newsletter. Many thanks for allowing us to republish it! You may also be interested in the article Common Source Water Deficiencies.

Ohio EPA conducts sanitary surveys at least once every three years at community public water systems (PWS) and once every five years at non-community PWSs. The purpose of a sanitary survey is to evaluate and document the capability of a water system’s source, treatment, storage, distribution, operation and maintenance, and management. Each of these may favorably or adversely impact the ability of the system to reliably produce and distribute water that meets drinking water standards. 

This article is the second installment in a series of articles to help small water systems identify the most common problems found during a sanitary survey or other investigatory site visit conducted by Ohio EPA staff. The first article focused on source water (well) deficiencies. This article will focus on some of the more common treatment equipment deficiencies which are found during inspections of small water systems.  Future articles in this series will cover distribution deficiencies and other topics. 

Backwash discharge lines: If you have a softener or a pressure filter, you backwash your equipment to clean and replenish the media. The waste that is produced when you backwash discharges into a floor drain or another pipe, which carries the waste to where it will be treated.  If the pipe carrying the backwash wastewater from your treatment equipment is too close to, or even inserted into, the drain or pipe that carries the waste to treatment (see Figure 1), you could end up with back-siphonage.

This could occur if the pipe carrying the waste to treatment backs up and the wastewater is siphoned back into your drinking water treatment equipment, contaminating your treatment equipment with whatever waste the pipe is carrying. Solution: Ensure there is a sufficient air gap between the backwash waste pipe and the floor drain or the pipe conveying the waste to treatment to prevent backsiphonage (see Figure 2). 

Softener tanks, cover, and salt: Softener brine tanks should be kept in sanitary condition. The brine solution should be kept free of dirt and insects. Solution: The best way to accomplish this is to completely cover the brine tanks with an appropriately fitting lid. The lid should not be over- or under-sized and should be kept in place on top of the tank. Also, the brine tank should not be overfilled such that the lid does not fit snug on the tank (see Figure 3).

All substances, including salt, added to the drinking water in a public water system must conform to standards of the “American National Standards Institute/National Sanitation Foundation” (ANSI/NSF).  This is to ensure it is a quality product that will not introduce contaminants into the drinking water. Solution: Ensure the ANSI or NSF symbol can be located on the bags of salt you use or ensure your salt supplier can provide you with documentation from the salt manufacturer that it is ANSI or NSF certified. 

Cartridge filters: Over time, cartridge filters will become clogged with iron or other minerals from your source water. When clogged, the filters become a breeding ground for bacteria. Solution: Ensure filters are replaced in accordance with the manufacturers’ specifications or even more often, depending on the quality of your source water.


General maintenance:
 Water treatment equipment should be accessible and cleaning solutions and other non-drinking water chemicals and materials should be kept away from the equipment. If treatment equipment is not accessible for Ohio EPA staff to inspect during a sanitary survey, it will not be accessible to the water treatment operator for routine maintenance or during an emergency. Likewise, non-drinking water chemicals stored in close proximity to treatment equipment can be an invitation for a mix-up or, even worse, intentional vandalism (see Figure 4). Solution: Keep clutter and non-drinking water chemicals and equipment away from drinking water treatment equipment. Preferably, these items should be stored in a different room.


Developing A Better Understanding of Drinking Water Technology Approval: WINSSS Center Project B1

When EPA in 2014 chose to fund the National Centers for Innovation in Small Drinking Water Systems, their vision for the Centers was much more than developing new drinking water technologies; they asked them to also consider facilitating acceptance of both new and existing technologies, improving relationships between stakeholders, fostering dialogue among regulators, and facilitating the development of uniform data collection approaches for new technologies. All of the non-treatment pieces of the vision have been incorporated into the WINSSS Center’s Project B1.

Project B1 has three objectives:

  1. Conduct a survey of the states to determine the barriers and data needs for technology acceptance.
  2. Develop a states workgroup and use the survey results as a starting point to discuss how to overcome those barriers and develop a set of uniform data needs.
  3. Take the workgroup results and apply them to the New England states to work toward multi-state acceptance.

The first objective has been completed, and the workgroup called for in the second has been meeting every other month since December.

Recognizing the importance of state buy-in to the project, the PI’s proposed to include the Association of State Drinking Water Administrators (ASDWA) as a partner in the survey implementation at the proposal stage. They have been a great partner, and the success of this project is a reflection of their involvement. It was also clear early on  that both Centers had proposed work related to developing a better understanding of acceptance of technologies, so we joined forces. It proved instrumental in the development of the questions, and there were at least eight participants from WINSSS, ASDWA, and DeRISK, that had a hand in the question development.

The survey included 16 questions asking states about their approach to technology acceptance, their experiences with new technologies, barriers to getting these technologies to small systems, data needs for acceptance of any new technology, and their interest in participating in our effort. Forty  states responded, again thanks to ASDWA’s involvement, and the data were telling. We learned that many states don’t consider new technologies for small systems because of cost and risk and that states generally struggle with having the staff and technical expertise to understand and approve new technologies. The most common barriers were a lack of staff and staff time to approve technologies, adequate performance data from vendors, funding for testing/evaluation, and training for state staff.

We asked the states to tell us what questions they needed answered to approve a technology, and over half of the states listed performance data to support the technology, pilot data from multiple locations or water qualities, residuals produced, third party certification and understanding of where technology is appropriate, and understanding the operator skills needed to operate the technology. They also listed the data deficiencies they see most often. These included range of water qualities tested, length of pilot testing, scale of pilot testing, and operating costs, among others.

The good news is that 11 of 14 “emerging” technologies provided to the states in the survey have already been implemented in at least 10 states. This suggests that more technologies are in use than we initially believed and for some technologies, better sharing and communication mechanisms between states are the most immediate needs.

We also asked states how they used the data from EPA’s Environmental Technology Verification Program (ETV) and Arsenic Demonstration Program in accepting new technologies. Nineteen states said they rely on ETV certification or testing protocols as part of their process. Fifteen states said that the Arsenic Demo Program influenced their decisions related to the tested technologies. These programs no longer exist, but they provide valuable insight into how we might consider developing a new program to support the states for sharing data and communicating technology approval information.

The last part of the survey focused on technology acceptance and asked the states if they would be interested in sharing data, developing common standards with neighboring states, or partnering with nearby states to coordinate technology approval. Six states did not answer this question, but 33 of the 34 who did were at least somewhat interested in developing a data sharing network. Twenty-eight states were also interested in developing common standards with nearby states, and 23 were interested in developing partnerships with nearby states to approve technologies. These are very encouraging results.

The survey data were shared with the states, and a workgroup of Centers, ASDWA, and state staffs was formed. The first meeting was in December 2015, and much progress has been made since. The workgroup has developed a draft framework for an entity that would support a shared data repository. They are currently developing a plan/proposal to share with the Interstate Technology & Regulatory Council board (ITRC) to consider how this entity might work with or within the existing ITRC framework. No decisions on this have been made and the workgroup is evaluating options. An open call to all industry stakeholders is planned for late July or early August to share progress to date and to get feedback.

There are no illusions that this can all be accomplished in a short time; the issues and barriers related to technology acceptance have been discussed within the industry for more than 25 years. But this project has created buzz within the industry, as well as with the states and USEPA. It has momentum, and the idea of developing a consensus approach for sharing data and fostering cooperation among all stakeholders that both supports the states need to protect public health and makes it easier for technologies to be accepted by states is now being discussed among all of the relevant players.

Common Source Water Deficiencies

This article was first published in the Winter 2011 issue of Spigot News, the Ohio EPA's drinking water program newsletter. Many thanks for allowing us to republish it!

Ohio EPA conducts sanitary surveys once every three years at community public water systems (PWSs) and once every five years at noncommunity PWSs. The purpose of a sanitary survey is to evaluate and document the capability of a water system’s source, treatment, storage, distribution, operation and maintenance, and management; these all may adversely impact the ability of the system to reliably produce and distribute water that meets drinking water standards.  

This article covers the sanitary survey or other investigatory site visits conducted at the water source and concentrates on the most common deficiencies found during the visit of small PWSs. Even though the article focuses on small systems, similar deficiencies can be found at larger public water systems. Future articles will cover treatment, distribution and other topics. 

There are common deficiencies surveyors hope not to find when conducting a sanitary survey, or when following up on complaint investigations or responding to total coliform bacteria positive sample results. Figures 1 and 2 show poor water sources and figure 3 shows an acceptable water source. Figure 1 shows a well equipped with a sanitary seal which is missing bolts. It also shows that the casing is flush or in line with the finished grade, and the electrical wire and raw water line are exposed and unprotected. Although the well is vented, it does not have a screened vent. The well is also not protected from surface water runoff, other contaminants or critters. 

Figure 2 shows a public water system well located in a parking lot. The well cap is missing bolts and therefore is not properly secured to the top of the well casing. There is also a depression surrounding the casing. If rainwater pools near the well, it can seep down along the casing and negatively impact the ground water and its quality. Located to the left of the well are bags of sodium chloride, which increases the potential for rust at the base of the well. Also, there is not enough protection around the well to prevent damage from motorized vehicles to the casing or electrical conduit.  

Although you can’t see this in the picture, the well has a 1988 approved “National Sanitation Foundation” (NSF) well cap but it is not a “Water System Council” PAS-97 (or Pitless Adapter Standard, 1997) approved cap as required. The PAS-97 cap provides a properly screened vent which is not present in this cap. 

Figure 3 shows an acceptable water source. The well casing extends approximately 24 inches above finished grade, which is beyond what is required (at least 12 inches above finished grade). The finished grade is sloped to drain surface water away from the well.  The approved well cap fits flush over the top of the casing and electrical conduit; it provides a tight seal against the casing and prevents the entrance of water, dirt, animals, insects or other foreign matter. The well is also properly protected with concrete filled posts to protect it from motorized vehicles and mowers. 


Educate Decision Makers With Help From RCAP

Google “drinking water” or “wastewater,” and you’re sure to find a growing list of news articles about lead safety concerns, the recent PFOA and PFOS advisory, nitrogen and phosphorus pollution, and our crumbling infrastructure. The weight and fervor of these public discussions may concern some who grapple to protect our drinking water and environment. But increased attention has its benefits. It could mean your board members and other community decision makers would be more receptive to learning about your operations and operational needs. And that’s an opportunity you don’t want to miss.

Last year, the Rural Community Assistance Partnership released two video series designed to help leaders in small, rural communities make more informed decisions about drinking water and wastewater operations, maintenance, and expansion. Each video spends roughly 2-4 minutes walking the audience through a different technical step in the drinking water or wastewater treatment process. Click on the links below to watch the videos.

Wastewater Treatment

  1. Introduction
  2. Collection system
  3. Preliminary treatment
  4. Primary treatment
  5. Secondary treatment
  6. Solids and sludge handling
  7. Effluent disinfection
  8. Effluent disposal

Drinking Water Systems

  1. Introduction
  2. Raw water intake
  3. Pre-settlement and pre-treatment
  4. Static mixers and flash chambers
  5. Sedimentation and filtration
  6. Distribution systems

Beyond these series, sharing the RCAP video The Importance of an Operator in a Community’s Water System with your governing body will provide insight into the day-to-day work of an operator and the importance of that role.  

Click here to browse these videos in a playlist.

To find more videos from RCAP and other technical assistance providers, visit our Documents Database and click Videos in the Type category. And subscribe to the WaterOperator.org newsletter to get featured videos and other resources sent straight to your inbox.  

Tools for Transient Public Water Systems

Does your truck stop, restaurant, or campsite supply water to customers from a well or other privately-owned water source? If so, you’re what I.S. EPA calls a transient noncommunity public water system. And you’re not alone.  Every business and organization across the country that serves at least 25 people—not necessarily the same people—for at least 60 days out of the year is a TNC and must comply with Safe Drinking Water Act regulations and any requirements set by the local primacy agency. 

Getting and staying in compliance can be complicated, but your state’s primacy agency and your local technical assistance providers are there to help. If you aren’t able to confidently answer any of the questions below, you should consider reaching out for guidance to ensure you are providing safe water.

  • Is your system’s water source approved for public consumption?
  • Are you required to have a licensed operator?
  • Do you know what chemicals you’re required to sample and how frequently?
  • Are you up-to-date on your sampling requirements?
  • Do you know what type of treatment is best for your source water?
  • Do your tanks, pipes, and pumps align with state capacity and flow rate rules?
  • Do you have—and are following—an operations and maintenance plan that aligns with state and federal requirements?
  • Are all other required manuals and plans up-to-date and stored in a safe location? This may include engineering plans and maps, an emergency response plan, and evidence of compliance with EPA risk management requirements.
  • Do you have an organized record of all operation and maintenance activities?

You can also find more information on many of these and other small system concerns through our documents database. This short video tutorial can help you get started. 

Collaboration Toolkit: Protecting Drinking Water Sources Through Agricultural Conservation Practices

As a small water system operator, the journey of supplying safe, clean water to consumers begins at the source. Source water protection is best approached through collaboration and can be enhanced with the use of voluntary conservation practices by local agricultural professionals. This is especially the case in regions where nitrate and phosphorus runoff from agricultural operations threaten source water quality.

Fortunately, the Source Water Collaborative (SWC) developed a simple six-step toolkit designed to facilitate collaboration between source water stakeholders (like you) and landowners through U.S. Department of Agriculture (USDA) conservation programs.

Step 1: Understand how key USDA conservation programs can help protect and improve sources of drinking water

In order to foster beneficial relationships for source water protection, it is important to understand what national, state, and local organizations can be of service to you. Two USDA sponsored organizations are highlighted in the toolkit: The Natural Resources Conservation Service (NRCS) and the Farm Service Agency (FSA). NRCS exists to provide technical and financial assistance to both landowners and operators for the enactment of voluntary conservation practices. FSA works to provide farm commodity, credit, conservation, disaster, loan, and price support programs. Having a working knowledge of specific programs, key contacts, and common vocabulary are vital first steps to take in your source water project.

Step 2: Define what your source water program can offer
Next you’ll need to understand NRCS and FSA programs and how they relate to specific operations and regulations in your state. This can be done quickly by browsing by location for NRCS state offices at nrcs.usda.gov and fsa.usda.gov. It’s important to note that the staff of these organizations are often the most aware of the regulatory structure of environmental programs, so be sure to make it known that you wish to work collaboratively. You should then focus on identifying what specific areas or projects collaboration with conservation practices could enhance. This is your opportunity to share valuable information such as source water data and GIS maps in order to identify potential water quality improvements.

Step 3: Take action

Step 3 of the collaborative toolkit focuses on making concrete moves to begin an action plan. It suggests you start by contacting your assistant state conservationist for programs. Be clear about your intentions to foster a partnership regarding source water concerns and NRCS programs that can be of assistance. Linked in the toolkit are initial talking points, a draft agenda for the first meeting, and key USDA documents to help you begin your first steps to action.

Step 4: Find resources
This is where you do your homework. Step 4 lists several links to very useful conservation and source water resources: A list of NRCS conservation programs, state drinking water programs, watershed projects, maps of nutrient loading, and much more. These resources will ensure you develop your project with the correct programs and people.

Step 5: Coordinate with other partners

This crucial step enables you to make sure that you are partnered with the people that will give your project the highest probability of success. The links listed in this step are for key partners who can bring data, technical capabilities, useful state and local perspectives, and other important stakeholders. These links include U.S. EPA regional source water protection contacts, state source water program contacts, state clean water programs, and other federal agencies that can make your efforts more productive.

Step 6: Communicate your success & stay up-to-date
Finally, share your source water protection experiences with SWC to facilitate improvements to the toolkit and promote the toolkit among water colleagues.

Finding the right partners for voluntary, collaborative conservation practices is a progressive step for improved source water protection. By utilizing the resources and tips provided in the collaboration toolkit, you can put yourself in the best position to maximize your source water protection potential. Visit Source Water Collaborative  for more information on any of your protection questions.